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The stress--strain state of an isotropic plane, weakened by a cavity of arbitrary shape, is sought approximately by solving the elastic 
problem in a large circle with the same cavity. An asymptotic analysis of the problem is carried out with a parameter (the radius 
of the circle) and, among the variety of stable natural and artificial boundary conditions on the circle, the one is chosen which 
provides the best approximation of the problem for an infinite body. Asymptotically accurate estimates of the errors in calculating 
the displacements, stresses and their derivatives are given. Possible extensions of this approach to other bodies, including three- 
dimensional or two-dimensional wedge-shaped bodies are discussed. © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M S  

Consider an isotropic homogeneous elastic plane R n (a space with n = 3), which is weakened by a cavity 
co containing the origin of coordinates x = 0. The displacement vector u = (ut . . . . .  un) satisfies the 
system of Lam6 equations 

L(V)u(x)  =- -IxV. V u ( x ) -  (~, + t l)VV , u(x) = f ( x ) ,  x ~ ta = R" \ g (1.1) 

Here g and IX are the Lam6 coefficients, f is the vector of the mass forces, V = grad, V. = div and 
V • V = A is the Laplace operator. We set the following boundary conditions on tgo) 

N(x, V)u(x)--o(V)(u; x )=g(x) ,  x e 3 t o  (1.2) 

u(x) = g(x), x e Oto (1.3) 

In (1.3) g is the vector of forced displacements and in (1.2) g is the vector of the external loads, and v 
is the unit vector of the inward normal (with respect to o~) to the surface tg~ = tgf2, which, for simplicity, 
we will assume to be smooth. Moreover 

( Ouj 
t~ij(u)= u / - - + - - I + ~ i . ~ , V . u ,  o~V ' (u )=  vioi , (u ) 

"-t ,% J " 

Summation is carried out over repeated subscripts in the limits from 1 to n and 6, 7 is the Kronecker 
delta. 

Suppose R e [R °, +oo) and the quantity R ° are so large that the circle (a sphere when n = 3) BRo = 
{x e R n :Ix I < R°} contains the set ~ = co tO ao~. Consider the equations 

L(V)uR(x) = f (x ) ,  x e tar = BR I (1.4) 

MR(x, V)uR(x) = hR(x), x e OBR 

supplemented by one of the boundary conditions 

(1.5) 

N(x,  V)uR(x) = g(x), x ~ 3to (1.6) 

uR(x) = g(x), x e Oto (1.7) 
The solution u R of problem (1.4)--(1.6) in the truncated region f~g is interpreted as an approximation 

to the solution u of the external problem. The following question arises: how should the operator M R 
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(x, V) of the boundary conditions on the far boundary OBR be chosen so as to obtain the best rate of 
convergence of u R to u as R ~ oo? 

This problem has long attracted the attention of mathematicians in view of the fact that many numerical methods 
(for example, the finite-elements method) require changing from an unbounded region to a bounded region. 
The external three-dimensional Dirichlet problems for the Laplace and Stokes operators were discussed in [1-4], 
artificial boundary conditions on OBR were chosen, and the difference u - UR was estimated in an energy norm. 
Boundary-value problems for a three-dimensional Lam6 system were investigated in [5] (a brief description of 
the results will be given in Section 2). Three possibilities were considered: the surface OBR is rigidly clamped 
(MRu = u are the Dirichlet conditions), is stress-free (Mgu = Nu is the Neumann condition) and the elastic closing 
conditions (the mixed boundary conditions) are realized on OBR. In the third case, the operator MR is defined by 
the formula 

MR(x, V)u R (x) = o ~v~ (uR; x) + a(x)u R (x) (1.8) 

where v = x[x [-1 is the outward normal to OBR andA is a symmetric and non-negative definite 3 x 3 matrix function. 
It turns out that, with the appropriate choice of A, problem (1.4)-(1.6) with the operator M R from (1.8) gives the 
best accuracy O(R -2) of the approximation. 

Problems of the theory of elasticity in unbounded regions are an idealization of the actual problems for bodies 
of finite dimensions. Nevertheless, it is precisely these problems that play a predominant role in asymptotic analysis 
(see [6-9], etc.), and their integral characteristics occur in various asymptotic formulae (see [7, 10-13], etc.). The 
most important of these characteristics are the matrices (tensors) of elastic capacity and polarization, which 
generalize the well-known classical objects in the theory of harmonic functions (see, for example, [14]). The elements 
of these matrices are expressed in terms of integrals of the solutions of problems (1.1), (1.3) or (1.1), (1.2) with 
special right-hand sides, i.e. for these it is sufficient to increase the accuracy of the calculations only in the region 
of the opening co. In Sections 3-5 we distinguish a zone of improved approximation by means of weighted estimates 
of the difference u - u R and its derivatives. 

The majority of methods used later are suitable for anisotropic or non-uniform materials (see Section 6), but 
even in the case of isotropy, an approximate determination of the polarization matrices by truncation of the regions 
makes sense, since simple representations of these in terms of conformai mappings in [15, 16] turn out to be invalid 
(the key relations (5)-(8) in [15] and (17) and (21) in [16] are erroneous, and their correction leads to awkward 
final formulae). 

The results of this paper, relating to problem (1.1) and (1.2), remain unchanged when the cavity is 
replaced by an elastic inclusion. 

2. THE T H R E E - D I M E N S I O N A L  P R O B L E M  

The coordinate x ~ ~ = R-ix of the region f2R is transformed by compression into a unit sphere with 
a small cavity o~(R) = {~ ~ R 3 :R~ e c0}. Hence, we must interpret problem (1.4)-(1.6) as a singular 
perturbation of problem (1.1), (1.2). Methods of constructing the asymptotic form of the solutions of 
such problems have been developed considerably (see [6, 9, 17], etc.). We will use the method of matched 
asymptotic expansions and we will seek a solution in the form of the formal series 

uR(x) = ~ R-k(u t (x )+  wt(R-Ix)) (2.1) 
k=O 

Terms of the series u k, which depend on the "fast" variables x, are solutions of problems (1.1), (1.2) 
with certain right-hand sides, defined recurrently. The vector functions w k are written using the slow 
variables ~ = R-ix, and their role consists of compensating for discrepancies of t) ~ left in the boundary 
condition (1.5) on 0BR. They are found when solving problems of the following type 

L(V~)w(~) = 0, ~ e B I = {~:l~l< 1} (2.2) 

M(~, V~)w(~) = h(~), ~ e bB z (2.3) 

Here L(V~) is the Lam6 operator from (1.1), containing differentiation with respect to ~, while the 
operator M from the boundary condition on the unit sphere 0B1 is related to the operator M ~ from 
(1.5) as follows: 

MR(x, Vx)=MR(R~, R-tV~)=R'~M(~, V~) (2.4) 
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Here × is an integer which shows the degree of generalized homogeneity of MR with respect to the 
replacementx ~-~ ~. Essentially (2.4) is the first of the limitations imposed on the structure of the operator 
of  the artificial boundary conditions. 

It is logical to assume that the fundamental term t~ ° in (2.1) is identical with the solution u of the 
external problem (1.1), (1.2). Hence, the next aim is, by choosing the operator MR, to annul as many 
of the following terms of series (2.1) as possible. Thus, if we show that 

U 0 = U, W 0 W K - I  I K - I  . . . . . .  0, u = . . . .  v = 0  (2.5) 

then u R is an approximation to u of order K and when x e f~R 

u(x)  - uR (x)  = O( R -K ) (2.6) 

For the complete expansion (2.1) to hold we must assume that the right-hand s i d e f o f  system (1.1) 
is finite (equal to zero when Ix I > R1). However, the final formulation of the result (see later, Section 
3) requires a weaker constraint 

f ( x )  = O(Ixr -4-~ ) (2.7) 

Here e is an arbitrary (generally speaking, small) positive number, and to reduce the amount of writing 
we will agree that formula (2.7) can be differentiated as many times as desired, assuming that VO(I x I t) = 
O(1 x I~-~). As is well known (see, for example, [18, Section 6.4] and [5]), a unique solution of problem 
(1.1), (1.2) exists, which vanishes at infinity, which, moreover, allows of the asymptotic representation 

u(x)  = T (x )a  + O(Ix1-2 ) (2.8) 

Here  a is a column which depends o n f a n d  g (all the vectors are realized as columns in the Cartesian 
representation), while T is the Kelvin-Somigliana tensor, considered as a 3 × 3 matrix with elements 

~y (X) = ~lx l  -I [(1 + 2Y)~i) + XiXjlX1-2 ] 

a = (~, + la)[8np(~ + 2~t)] -I, 7 = It( ~ + ~)-i 

Suppose initially that MR is the operator of the Dirichlet conditions, × = 0 in (2.4) and 

MR(x ,  V )uR(x ) - - -uR(x )=O,  x e a B  R (2.9) 

Then the principal term of the discrepancy, generated by u in boundary conditions (2.9), is equal to 
T(x)a = R-1T(~)  and is compensated by the solution w 1 of system (2.2) with the Dirichlet condition 

w l ( ~ )  = -T(~)a, ~ E aB I 

Thus, w ° = 0, i.e. relations (2.5) with K = I are satisfied, but the term w 1 in (2.1) need not be annulled. 
Consequently, problem (1.4), (2.9), (1.6) yields an approximation to u of the first order. 

We will investigate the case of mixed artificial boundary conditions. Suppose the elements of the 
3 x 3 matrix are defined as 

2l't lxl-'(¥Sij+ 3+5¥ ) 
Ai j (x )=  I +~, 2(1 +~,) (2.10) 

For the operator M R from (1.8) relation (2.4) holds with × = -1. As calculations show [5], for any 
column a the following equality holds 

MR(x, (v) V)T(x)a  = (y (Ta;x) + A(x)T(x)a = 0 (2.11) 

Hence, in view of (2.8) and (2.11) the discrepancy of the solution u in conditions (1.5) is O(R-3). Hence, 
the terms w ° and w 1 in series1(2.1 ) disappear; moreover, the term t~ I, designed to eliminate the additional 
discrepancy generated by w in (1.6), also drops out. 

Thus, formulae (2.5) hold for K = 2, i.e. the solution of problem (1.4)-(1.6) with h n = 0 and with 
the operator M ~, taken from (1.8) and (2.10), yields a second-order approximation (better than when 
setting conditions (2.9) on OBn). 
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IfA = 0 in (1.8), then M n takes the form of the operator of the boundary conditions in the stresses. 
The Neumann problem thus obtained in f~R is solvable if six equations are satisfied (the principal vector 
and moment of the loads are necessarily annulled), and its solution is determined apart from rigid 
displacements. It has been established [5] (see also Section 4 below), that with a special choice of h n 
in (1.5) the stresses ~i:(u R) serve as a good approximation for aij(u) in f~n. Nevertheless, the operator 
MewithA from (2.10) possesses obvious advantages: homogeneity (h n = 0) of boundary condition (1.5) 
and unique solvability of the corresponding problem (1.4)-(1.6). 

3. DISCUSSION 

The main ideas in constructing artificial boundary conditions are particularly obvious in the example 
of the Laplace operator with the fundamental solution in R 3 

ep( x) = ( 4nlxl)-' (3.1) 

Here the solution u of the external problem (Dirichlet or Neumann) allows of the expansion u(x) = 
aoeP(x) + 0(I x I)-2). The operator M" is chosen so that it cancels the principal asymptotic term a0~. 
In the scalar case considered, it is possible to achieve this cancellation on any truncating surface Fn = 
af~R\aco (attention was given to this in [5], but in [1, 2] F/~ is a sphere). Thus, if FR = {x: R -1 x e F}, and 
F is a surface with outward normal v, then 

MR(X ' V)=Vj ~....~_ +VjXj =~ +Ao(X) 
~ x j  ix l  2 - v 

and 

1 xj VlX j 1 • 0  (3.2) 
MR(x, V ) O ( x ) = - v j  4~ Ixl 3 + - i ~  4~lxl 

However, the single requirement (3.2) is insufficient, since the problem obtained in On must 
possess "good" properties. Green's formula holds, and this leads to a variational formulation of the 
problem 

- j  uAudx+ I u ,,uas  + f = 
fa R ~oJ rR 

= j" IVul 2 dx + I AO lu12 dsx 
~R VR 

(3.3) 

If, moreover, Ao(x) = v .  x > 0 when x ~ F (the inequality is guaranteed, in this case, when the region 
bounded by F is star-like with respect to the point x = 0; see [5]), the quadratic form on the right in 
(3.3) is positive definite and so the problem is uniquely solvable. 

The problem of the theory of elasticity (1.4)-(1.6) with the operator of the artificial boundary 
conditions (1.8) possesses all the above-mentioned properties. In particular, by Betti's identity, we have 

u. Ludx + f u. oc )(u)dsx + I u.  Au)ds  = 
t~R ~o ~Bs 

=2E(u; ~R)+ j" u. Audsx-'-2EA(u; ~R) 
ass 

Since the functional E(-; f~n) of the elastic energy is only degenerate on rigid displacements, the form 
EA(.; f~n) is positive definite in view of the above-mentioned properties of the matrixA from (2.10). 
However, the results obtained for the three-dimensional problem of the theory of elasticity is not as 
complete as in the case of the Laplace operator due to the requirements that the body f~ should be 
isotropic and Fn should be spherical. It has been verified [5], that for a non-spherical surface Fn the 
matrix A obtained from condition (3.2) loses the symmetry necessary for the variational formulation 
of problem (1.4)--(1.6). We do not know whether the truncating surfaces which provide desirable 
properties to the problem in f~n exist for anisotropic bodies. 

The two-dimensional case differs considerably from the three-dimensional one. We will explain this 
using the example of the Laplace operator, for which the fundamental solution in a plane has the form 
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@(x) = -(21t) -I Inlxl (3.4) 

Unlike (3.1) it increases as x ~ m, which leads to an " incorrect"  sign on A0 and to a loss in solvability 
in the corresponding problem. In fact 

~vO(x)+ Ao(x),t,(x) = -  t---v.-XJ _ Ao(x) l_L.inlxt 
2re j Ixl" 2re 

and so Ao(x) = - v  • xl x 1-2 (ln[x[) -1, and the inequality Ao(x) >t 0 is impossible everywhere on FR (in 
par t icularA0 = - ( R  In R) -1 for  the ne ighbourhood  Fn = t?BR). The  following sections, devoted  to the 
plane prob lem of  the theory of  elasticity, are therefore  based on o ther  considerations.  

The discussions carried out in Section 2 have a formal character and therefore need confirmation. The approaches 
used previously in [1--4], give only weak energy estimates (which deal with the norm in L2(f2R) of the difference 
Vu - Vun). Nevertheless, a method of deriving asymptotically accurate estimates of the solutions of singularly 
perturbed problems in weighted L2 norms has been developed [6, 9, 18, 19, 20]. This method was transferred 
in [5] to weighted norms, generated by HOlder classes and L v. We will formulate one of the results obtained in 
[51. 

Suppose 1 = 1, 2 . . . .  andp e (1, oo) are indicators of smoothness and summability and 13 and ~, are weighting 
factors which satisfy the inequalities 

- ± < f J - t - 3  3 l 3 (3.5) _+_<_<~_/_3+3<_ 
2 2 p 2 2 p 2 

We will assume thatg = 0 (for simplicity) and the right-hand of system (1.1) satisfies the relation 

Illfllll_,..l=f l~, t S lxlPtY-t+l+k)lVkf(x)lPdx)l/P<,,. 
k~=0 ta 

Here Vkfis the set of all derivatives of order k of the vector function f. The choice of the operator M R in the form 
(1.8), (2.10) then guarantees the following relation between the solutions u and u n of problems (1.1), (1.2) and 
(1.4)-(1.6) 

" ' ~k=O ~tr 

--VkuR(x)l p dr) lIp ~ cl~.tRll-~'lll flllt_l.v (3.6) 

The constant cl3,v is independent of bo th f  and R I> R °. Estimate (3.6) is asymptotically accurate, i.e. when 13 and 
"/reaches one of the limits indicated in (3.5), ca, v loses the stated property of independence. 

We emphasize that, when conditions (3.5) are satisfied, the difference ~, - 13, occurring in (3.6), can be made 
as close as desired to two. I f p  = 2 and 13 = 1 = 1, relation (3.6) takes the form of an estimate in an energy 
metric. 

Inequality (3.6), assumption (2.7) and the possibility of constructing a partial sum of series (2.1) imply a pointwise 
weighted estimate, which, when using the notation employed in (2.7), looks particularly simple. Thus, if relation 
(2.7) is satisfied, we have 

u(x)- u s (x) = O(R -2 Ixl 0 ) (3.7) 

Without dwelling on the physical interpretation of the conditions of rigid clamping of the surface of the internal 
cavity, we emphasize that all the above results hold for the Dirichlet conditions (1.3). For them formula (3.7) is 
the final one, but in the case of the Neumann conditions (1.2), when (2.7) is satisfied with e > 1, the right-hand 
side of (3.7) may decrease to O(R-3[ x 11) (see Sections 4 and 6 later). 

We will not consider further the problem of justifying the asymptotic expansions, since plane problems are solved 
using the same scheme from [5, 6, 9, 18, 19]. 

4. T H E  T W O - D I M E N S I O N A L  P R O B L E M  W I T H  B O U N D A R Y  
C O N D I T I O N S  IN T H E  S T R E S S E S  

Suppose n = 2, i.e. f)  and f~R are the plane R 2 and the circle BR respectively with an opening o- .  If 
r equ i remen t  (2.7) holds, the solution u of  the external  Neumann  problem (1.1), (1.2) is de termined,  
apar t  f rom a constant  te rm c ~ R 2, and allows of  the representa t ion 
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6 
u(x) = c+ ~, bjT(J)(x)+O(Ix1-2 ) (4.1) 

j=l 

Here T (1) and T (2) are columns of a 2 x 2 Boussinesq matrix (a two-dimensional Somigliana tensor) 
with elements 

T/j (x) = a{-Sij lnl xl +'~¢iXjJ x1-2 } 

a = (k+31x)[4nlx(Z+~t)] -I, y =(~.+l.t)(X+31.t) -~ 

T(3 )  _ 1 : ~  , # 2 )  T (4 )  _ 1 t:~ - r (2)  - ~ , " 1 -  -~2T(t)), - ~ " l "  +32 TO)) 

(4.2) 

T(s) =~l TO), Tt6) =~92 TC2), ~i =OlOxi, i=1, 2 (4.3) 

The coefficients bl, b2 and b 3 have the meaning of the components of the principal vector and of the 
principal moment of the loads, and are found from the formulae 

b, = I/,d  + I g,d,x 
fl ~t~ 

b.a = I (x2fl -xl f=)dx + I (x2gl -xlg2)dsx (4.4) 
ta 

We will first set the Dirichlet conditions on the far boundary aBR and we will seek the asymptotic 
form of u R as the partial sum of series (2.1). In order to reduce the discrepancy u in (1.5), we will choose 
the right-hand side of h R in accordance with (4.1) 

uR(x) = hR(x) - btTO)(x)+b2Tt2)(x), x • ~Bl¢ (4.5) 

We emphasize that bl and b2 are calculated directly fromfand g. Now, by (4.1) and (4.3) the discrepancy 
u in (4.5) is 

6 
c+ E bjT(J)(x)+OOxl-2-" )=c+ R-1~ b:T(:)(~)+OfR -2-~) 

j=3 j=3 

(We assume that e ~ (0, 1) in (2.7).) Hence, w ° = --c while w 1 is the solution of system (2.2) with the 
boundary condition 

6 
w'(~) = - ~ ,  bjT(J~(~), ~ ~ ~B l (4.6) 

j=3 

1 1 1 Here the smooth vector function R- w (R- x) generates a discrepancy O(R -2) in (1.6) and hence t> 1 = 
0 and the term t~ 2 of series (2.1) vanishes at infinity as O(I x I-1). 

We will consider the Neumann problem in f2n. To satisfy the solvability conditions we will specify 
forces on the external contour ~BR which balance f and g 

3 
N(x, V)uR(x)--- O(V)(uR; x) = ~, B:CI(V)(T(J>; x), x • OB R (4.7) 

j=l 

The quantities b R are obtained from (4.4), in which the integration set t2 is replaced by f2R; by virtue 
of (2.7) we have 

Ibl R - b l  I+lb2 R -b21+R- l lb  R -b31<~ cR -2-~ 

Since b R differs only slightly from bj, the plan for constructing the initial terms of series (2.1) remains 
the same as for conditions (4.5), but we can put w ° = 0 and relation (4.6) must be replaced by 

6 
t~tV~(wl; ~) = - T. bjotV)(TtJ); ~), P, • t~B t (4.8) 

j=4 
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Further, we mean by u ° the solution u for which c = 0 in (4.1), i.e. w ° = 0 always. Taking into account 
terms O(I x [-2) in expansion (4.1) (combinations of the second derivatives of the columns of T 0) and 
7 (2) we can also determine the term R-2w 2 in (2.1); it is a vector function that is continuous in/~.  Thus, 
in both versions 

uR(x) =u °(x)+ R-lwl(R-Ix)+ R-2u 2(x)+ 
+R-2w2 (R-Ix) + O(R-2-tlxl ° ) (4.9) 

Since the solution of problem (I.i), (1.2) itself is determined apart from an additive constant, it makes 
sense to estimate the difference u - u ~ - c R, where c R ~ R 2 is any convenient column. By (4.9) when 
C R = C - g - l w 2 ( 0 )  - R2W2(0) with x ~ f)R 

u(x) - uR(x) - c R = O(R-21 x 1 I) (4.10) 

Both problems (1.4), (1.6), (4.5) and (1.4), (1.6), (4.7) give an approximation of the first order for 
the displacements, and of the second order for the stresses and derivatives of the displacements. 
The problem with the Dirichlet conditions possesses some advantages: the structure of the right-hand 
side in (4.5) in simpler compared with (4.7) and it is uniquely solvable. Moreover, the arbitrariness 
in the choice of the solutions of problems (1.1), (1.2) and (1.4), (1.6), (1.7) is still not the same; in the 
first case it is the vector c = (cl, c2) while in the second it is the vector c + c30, where 0 is the rotation 
(x2, -x~). 

5. T H E  T W O - D I M E N S I O N A L  P R O B L E M  W I T H  B O U N D A R Y  
C O N D I T I O N S  IN T H E  D I S P L A C E M E N T S  

As in the previous section, n = 2. We know (see, for example, [18, Section 6.4]) that when requirement 
(2.7) is satisfied there is a unique bounded solution u of problem (1.1), (1.3). It can be represented in 
the form 

6 
U(X) = C + ~bjTfJ)(x) + O(Ix1-2) (5.1) 

j=3 

The column c = (c], c2) and the factors b3 .... , b6 depend onfandg, while T <j) are defined in (4.3). 
In the further asymptotic constructions we will claim a number of special solutions of homogeneous 
problem (1.1), (1.3) which increase at infinity. Namely 

41 = r<l~ + 410, 42 = r<2~ + 4~0, 43 = 0 + 43° (5.2) 

Here  ~i0 and ~30 are bounded energy solutions of problem (1.1), (1.31) with right-hand sides f = 0, 
g = _7(i) and g = - 0  (i = 1, 2). By (6.1) the following expansions hold 

6 
V°cx) = (Q~, ,Qj2 )+ nE__~.T<'~(x) + O<lx1-2 ), J = L2,3 (5.3) 

The matrix Q = (Q.k)2k 1 is symmetrical; we will denote its columns by Q(1) and Qf2) Using solutions 
' • J .  • ~ • " 

(5.2) (weighting functions) we calculate the coefficients cl, c2 and b 3 f r o m  ( 5 . 1 )  

c i = -If.;idx+ Ig.ofv)f4i)dsx, i= 1,2 

a ~ (5.4) 
b3 --- If'43dx - Ig'c¢~)(43)ds~ 

ta ~o~ 

All the information on ~: can be found in [10]. 
Finally, using the last equation in (5.4) and recalling that ~30 solves problem (1.I), (1.3) with f = 0, 

g = -0, we obtain the sign of the coefficient/'33 in (5.3) withj = 3 

43 = ~ 0- C¢ v)(43)ds x = - ~ 4 ~" (Ytv)(43O)dsx = -2E(43° ;f~) < 0 
ba~ 

In (5.5) we have used Betti's identity, and we mean by E the functional of the elastic energy 

(5.5) 



612 S.A. Nazarov and M. Specovius-Neugebauer 

1 2 
E ( u ; E ) = ~  Y, ~(aij(u) 2 (5.6) 

2 ~  i,j=l ~" 2(~, + ~)  ($ii (U)O jj (l~)dx 

We will now investigate problem (1.4), (1.5), (1.7) in f~R. We specify the Dirichlet condition (2.9) on 
the far boundary c~Bg. It is taken to be homogeneous because, according to (5.4), the coefficients ci in 
(5.1) are unavailable withgut preliminary solution of the external problem (1.1), (1 .3)~we must know 
the weighting functions ~'. When constructing the asymptotic form, we will use the method proposed 
in [21] (see also [17, 6, 9]) and we will seek the principal term of series (2.1) for u R as the linear 
combination 

v ° = u + BI~ I + B.z~ 2 (5.7) 

0 We will calculate column B of coefficients n i in (5.7) when determining the term w of series (2.1), 
starting from the requirement w°(0) = 0 (otherwise, the discrepancy w°(0) ¢ 0 of the sum v ° + w ° in 
boundary condition (1.7) is unacceptably high). By (5.1)-(5.3) and (4.2) in the neighbourhood of OBR 

2 
v°(x) = c + ~ Bj (TtJ)(x) + QcJ)) + O(R-I) = H(~) + O(R -l) 

j=l 
2 

H(~) = c +if.Bin R+ Y.Bj(T(J)(~)+Q (j)) 
j=l 

Consequently, w ° is the solution of system (2.2) with boundary condition w°(~) = -H(~),  ~ e ~B1. It 
can be represented in the form 

2 
w ° (~) = - c  - ff.B In R + ~ Bj (,qjO (~) _ Qtj)) (5.8) 

j=l 

We have denoted by ~0  the solution of the same system, which is identical with -7  "(j) on aB1. The sum 
= T q) + r{ ° describes the displacement field in a disc B1 with a clamped edge acted upon by a unit 

force in the direction xj, concentrated at its centre. From the columns qq) = (~°(0) we set up a 2 x 2 
o matrix q (it is symmetrical). By virtue of (5.8) the required relation w (0) = 0 is equivalent to the algebraic 

system 

{--allnR + q - Q } B  = c (5.9) 

Here I is the unit 2 x 2 matrix. The matrix of system (5.9) is non-singular for sufficiently large R. 
Hence, from (5.9) we obtain the coefficients By = O(I lnR I-1). Moreover, 

2 
w°(g) = y Bj(nJ°(g)- •J°(0)) = O(lln RI -~) 

j=l 

Thus, the formulation on ~BR of the homogeneous Dirichlet conditions introduces a perturbation 
O(I lnR 1-1) into the principal term t~ ° of series (2.1). It is obvious that uR(x) converges to u(x) as 
R ---> oo for any fixed x, but the rate of convergence is extremely slow. We state finally that 

u ( x ) -  u R (x) I <<- Colin RI-' (1 + IInlx II) 

Vku<x)- Vk.R<~)[~< c~lln RI-'I~I -~, k--1,2 . . . .  

We now turn to problem (1.4), (1.5), (1.7) with conditions in the stresses on bBR (i.e. M R = N). 
We will first try to take u v = u. Calculating the discrepancy u in the homogeneous conditions (4.7) 
on ~Bn, we conclude that w ° = 0, while the term w r m u s t  satisfy system (2.2) and the boundary 
condition 

6 
~V~w',~) = -  Ebjo~rcJ~;~),  ~ G a~ (5.10) 

j=3 

If b 3 = 0, the Neumann problem obtained in B1 has no continuous solution (the principal moment 
of the load is not equal to zero). Hence, we must change the structure of the principal term of series 
(2.1). We will put 
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v ° = u - ~ 1 ~ 3  ( 5 . 1 1 )  

The vector function u ° satisfies problem (1.1), (1.3) and, by (5.1)-(5.3) and (5.5) admits of the expansion 

6 
u o (x) --- 0(x) + c + ~ c~/~J)(x) + O(Ix 1-2) (5.12) 

)=4 

Two facts turn out to be important: the term T (3), which generates a non-zero moment in the load 
(5.10), vanishes from (5.12), and the operator N annuls the rigid displacement 0 + C. 

Thus, the boundary condition for w I acquires the form (4.8) (with new coefficients), and the 
corresponding problem becomes solvable. Nevertheless, in view of (5.11) and (2.2) u(x) - uR(x) = O(1), 
and problem (1.4), (1.7) with homogeneous condition (4.7) cannot, in general, be regarded as an 
approximation of problem (1.1), (1.3). 

Unsatisfactory results were obtained on setting both stable (Dirichlet) and natural (Neumann) bound- 
ary conditions on FR = OBR; we will attempt to find an appropriate artificial condition. In an asymptotic 
analysis of the problem the presence of the third condition for the Neumann problem to be solvable 
in B1 (related to the moment) turned out to be disastrous. The conditions for solvability are generated 
by fields on which the energy functional is annulled (this observation is trivial thanks to Betti's identity). 
A set of Green's formulae exists for the Lam6 operator, on the right-hand sides of which there are 
quadratic forms, which differ from (5.6). We will indicate one of these, namely, 

f u. Ludx + fu .  x(V)(u)dsx = 2G(u;- =) (5.13) 

= I ~ (IX I Vut 12 +l x I Vu212 +(~. + IX)I V. u 12 )dx (5.14) G(u; =_) 

~u i ~uj ~u2 "Cii(U)=~'g'-Xi +(~,+IX)7"U, 'l;12(U)--'--g~22, a;21(U)----IX~X I 

~(v) t,r(v) ~,(v)), ~(v) = ~ 1  '~2 - i  =VI'CiI-I-V2'~i2 ( i = 1 , 2 )  

(5.15) 

The quantities (5.15) and (5.14) have no physical meaning; they can be called quasi-stresses and quasi- 
energies. However, the fact that G(u; E) = 0 only for the constant vector u is decisive: now the term 
w I of series (2.1) is a solution of system (2.2) with boundary condition 

(5.16) 
6 

M(~,V~)w I (~) ---- x(V)(w I ;~) = - ~,bix(V)(T(J);~), ~ ~ 8B t 
j=3 

Since the mean of the right-hand side of (5.16) over aB1 is zero, a continuous solution of this problem a 
exists. It is determined, apart from a constant term, and becomes unique for the normalization w (0) 

0 0 1 = 0. Using the usual scheme we can convince ourselves that u = u, w = 0, u = 0 in (2.1) (in particular, 
Eqs (2.5) are true when K = 1). Thus, if we define the operator M" (x, V) by formulae (2.4) with × = 
1 and (5.16), problem (1.4), (1.5), (1.7) yields a first-order approximation to the solution of problem 
(1.1), (1.3), which is undoubtedly better than in the previous cases. Finally, the following relation is 
satisfied 

(5.17) u ( x ) -  uR(x) = O(R -2 I xl  I) 

The formulation of these artificial conditions in order to approximate the external Neumann problem 
also possesses its own merits: while retaining the accuracy of the approximation of problem (1.4)- 
(1.6) there is the same arbitrariness (constant vectors) in choosing the solution as in problem (1.1), 
(1.2). 

6. N O T E S ,  C O R O L L A R I E S  A N D  G E N E R A L I Z A T I O N S  

1. The results obtained in Sections 4 and 5 also hold for an arbitrary (necessarily circular) truncating contour 
FR -- {x: R-ix ~ F}. Moreover, in the case of stable or natural conditions, the elastic material can be anisotropic 
or even non-uniform, but with different moduli, rapidly stabilizing at infinity. Any non-uniformity hinders the 
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construction of artificial conditions of the type (5.16) (since Green's formula is fixed). If, in the case of anisotropy, 
we write Green's formula (5.13) with quasi-energy G, which is only degenerate on constant vectors, then on FR 
we can formulate the boundary conditions in quasi-stresses. 

2. The weighted estimates used in [5] and here best reflect the behaviour of the difference u(x) - uR(x) in different 
zones (in the region of ~co, when Ix I = O(R), etc.). We will illustrate this by comparing the (unamended) relations 
(3.7) and (5.17) in the case of conditions (1.3) with n = 3 and (1.2) with n = 2. 

Formula (3.7) indicates that in a sphere with a fixed radius (independent of R) the difference u - u R and all its 
derivatives do not exceed cR -2 in modulus (the factor c depends on the radius and the order of the derivative). 
The same estimate holds for the difference itself everywhere in f~R, but at greater distances (of the order of R) it 
is improved for the derivatives. In particular, when I x I > R/2 (in the region of aBR) by (3.7) we have 

I v*.(x)-  v k :  (x) I <-c:-21xl -k <_ C R-2-k 

The accuracy of the approximation around the contour &o, guaranteed by formula (5.17), is O(R-2), despite the 
fact that, on the whole, the approximation is only of the first order--according to (5.17) the difference between 

R 2 1 u(x) and u (x) is O(R- ) on (30~, and increases as Ix I increases to O(R- ). Hence, (5.17) contains more accurate 
R information on [ u(x) - u (x) I than the estimate using the maximum of the modulus (2.6) with K = 1 (compare 

the end of Section 1). Extending the "interpretation" of (5.17), we have 

iv,ucx)_V,:cx)l _c:-21xl'-' 
Thus, for the first derivatives of the displacements (the strains and stresses) the error does not exceed clR -2 

everywhere in OR, while for the leading derivatives it decreases with distance from c3co. 
In the integral estimates of the form (3.6) the selection of zones, in which the approximation is characterized 

by different orders of accuracy, is achieved by varying the weighting factors 13 and ~,. Note also that the diversity 
of the weighted estimates in Section 4 is due to the need to modify the weighted norms for two-dimensional 
Neumann problems ([18, Section 6.1]). 

3. In a plane region f2 we consider the Neumann problem 

-Au(x) =l(x), x ~ fl; /)vu(x)= g(x), x ~ ~)tJo (6.1) 

We take the following as the approximating problem 

-AulC(x)= f (x) ,  x~[~R =BI¢ \~ ;  avule(x)=g(x), xEato (6.2) 

avUR(x) + R-luR(x)  = -b0(2l tR)- I ( l  + In R), x e a B  R (6.3) 

Here ~ = v.V, and the scalar functionf is subject to requirement (2.7) with e > 1 and 

b o = jffx)dx + Igfx)dsx (6.4) 
ta ~o 

The following expansion holds for the solution u 

2 a -2 
u(x) = b0,t,(x)+c+ T b~ :---,t,(x)+O(Ixl ) (6.5) 

i= I OXi 

Here • is the fundamental solution of (3.4) while c is an arbitrary constant. We fixed u = t) ° so that c = 0 in 
(6.5). The artificial condition (6.3) is characteristic of the fact that when x e aBR 

(av *(x)=-lfav x, _ 
R)lxl2 -o  

Consequently, when constructing series (2.1) we find that ~0 generates in (6.3) a discrepancy, O(R-3), and hence 
w ° = w I = 0 and t~ 1 --- t~ 2 = 0. After taking account of asymptotic terms of the order of Ix 1-2 and Ix 1-3 in (6.4) 
(combinations of the leading derivatives of ~)  we can determine w 2 and t~ 3 and w 3 in (2.1). 

Thus, like (4.10) we obtain a constant c R such that, in the notation of (2.7), 

u(x) - uRfx) - c ~ -- O(R-31 x I) (6.6) 

An increase in the approximation accuracy has occurred due to the choice of the same operator (3.2) as in the 
three-dimensional situation, but now it cancels not the principal term of expansion (3.4) but the first term, ignored 
on the right-hand side of (6.3). 

Using an affine transformation, any second-order scalar elliptic operator is transformed into a Laplace operator. 
Hence, for the external Neumann problem with any such operator, a truncating contour FR and an operator MR 
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in it exist which yields an approximation of higher accuracy (6.6). We were unable to construct such a surface and 
operator for the system of Lain6 equations. 

4. In the case of the Laplace operator, all the methods from the preceding sections can be transferred without 
difficulty to corner regions. We will discuss the Dirichlet problem 

-Au(x) =j'(x). x ~ ~;  u(x) = g(x), x ~ iK2 (6.7) 

Here f) C R 2 is a region with a smooth boundary (for simplicity), which coincides outside the circle B°R with the 
corner K = {x: r > 0, cp ~ (0, a)}; r, cp are polar coordinates, and r = Ix l, ct ~ (0, 2~). We will assume that the 
carriers f and g are compact (this condition can be replaced by the similar condition (2.7)). A unique bounded 
solution of problem (6.7) exists; for this we have the expansion 

u(x) = Cl r - A  sin(Ag) +c2r -2^ sin(2Atp) + O(Ix1-3^ ) (6.8) 

In (6.8) A = ~/ct, and cl and c2 are constants which depend onfandg.  The principal term of expansion (6.8) suggests 
the form of the artificial conditions on the arc FR = ~BR N K namely 

-~R(x)= f(x), X~R=~nB R 

uR(x)=g(x) ,  x~ t ) t~ raB R  (6.9) 

~vuR(x)+AR-luR(x)=O, x ~ F  R 

Using methods developed in [7, 9, 19], the solution u R can be decomposed into an asymptotic series in inverse 
powers of the parameter R -^. The initial terms of this series are 

uR(x) = U(X) + R-2Aw 2 (R-Ix)+ R-3Av 3 (x)+... (6.10) 

The function w 2 is found from the problem in the sector K1 = K N Bi 

-A~w2(~)=0, ~EKI; w2(~)=O, ~Eo~KnB! 

Ov(~)w2(~)+Aw2(~)=c2Al~1-2A sin(2A~), ~ F I 

The representation w2(~) = bml ~ I^sin(Acp) + O(] ~ ]2a) holds. 
We introduce the geometrical constraint f2 C K; it is not fundamental but it abbreviates the formulae (otherwise, 

by [7, 9, 19], in (6.10) we need to multiply w 2 by the truncating function). In this case u3 is the solution of the Dirichlet 
problem with finite right-hand side 

-Av3(x)=0 ,  x E ~ ;  v3(x)=-blrAsin(Alp), xE~f~ 

The relation t~3(x) = O(1 x [ -A) is satisfied. 
Summing up we have 

u(x) - uR(x) -- O(R-3AI X I A) 

For (6.11) to hold, strict requirements are imposed onfandg.  They can be reduced by converting to asymptotically 
accurate estimates, which are obtained by direct specification of the results [7, 9, 19], relating to singular 
perturbations of the regions close to conical, corner or internal points. In particular, due to the features of the 
leading derivatives of the solution u n at corner points (the ends of the arc Fn; when f ~ 0 and g ~ 0 on FR) the 
estimation is carried out using norms containing additional weighting factors, and powers of the distances to these 
points. All this relates in equal measure to the Neumann problem in f2, for which the artificial condition (6.9) takes 
the form 

~vIgR(x)+AR-II4R(x) = (2if.R) -I  b0(l +AInR), x ~ F R 

It is completely analogous to condition (6.3), where even the factor b0 is calculated using the previous formula 
(6.4). In general, the relation between the problems in the corner region and in the exterior of the compact set is 
closer than appears at first sight. 

In fact, by a conformal transformation the comer K and the region f) can be transformed into the half-plane 
R2+ and into the region R2+\Y respectively, where Y is a certain compact set; now an evenness (the Neumann 
condition) or an oddness (the Dirichlet condition) extension converts the problem to a problem in a plane with 
an opening. These transformations are impossible for an elastic problem in stresses and hence the question of 
constructing artificial boundary conditions remains open even for the simplest problem of a crack of a normal 
cleavage in an isotropic plane. However, the asymptotically accurate estimates themselves (for example, for solutions 
of problems with natural conditions on FR) are obtained by reference to the general results in [7, 9, 19] (see also 
[22]). 
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